
Syllabus



UNIT - I

INTRODUCTION & MODELING





some of OOD concepts that seem relevant 
to the UML:

• Class and object,

• Message, Operation, Method,

• Encapsulation,

• Abstraction,

• Inheritance,

• Polymorphism.

























UNIT II

CONCEPT & OBJECT



The Generations of Programming Languages
• Wegner has classified some of the more popular high-order programming lan- guages in 

generations arranged according to the language features they first intro- duced [2]. (By no 
means is this an exhaustive list of all programming languages.)

•

• First-generation languages (1954–1958) FORTRAN IMathematical expressions ALGOL 58
Mathematical expressions Flowmatic Mathematical expressions IPL V
Mathematical expressions

• Second-generation languages (1959–1961) FORTRAN II Subroutines, separate 
compilation ALGOL 60 Block structure, data types COBOL Data description, 
file handling

• Lisp List processing, pointers, garbage collection
• Third-generation languages (1962–1970)
• PL/1 FORTRAN + ALGOL + COBOL
• ALGOL 68 Rigorous successor to ALGOL 60 Pascal Simple successor to ALGOL 60
• SimulaClasses, data abstraction
• The generation gap (1970–1980)
• Many different languages were invented, but few endured. However, the fol- lowing are 

worth noting:
• C Efficient; small executables FORTRAN 77 ANSI standardization
•



Object-orientation boom (1980–1990, but few languages survive) Smalltalk 80 Pure 
object-oriented language

• C++ Derived from C and Simula

• Ada83 Strong typing; heavy Pascal influence

• Eiffel Derived from Ada and Simula

• Emergence of frameworks (1990–today)

• Much language activity, revisions, and standardization have occurred, lead- ing to 
programming frameworks.

• Visual Basic Eased development of the graphical user interface

• (GUI) for Windows applications

• Java Successor to Oak; designed for portability

• Python Object-oriented scripting language

• J2EE Java-based framework for enterprise computing

• .NET Microsoft’s object-based framework

• Visual C# Java competitor for the Microsoft .NET

• Framework

• Visual Basic .NET Visual Basic for the Microsoft .NET Framework



The Topology of First- and Early 
Second- Generation PLs

 
Subprograms 

Figure 2–1 The Topology of First- and Early Second-Generation 
Programming Languages 

Data 



The Topology of Late Second- and 
Early Third-Generation PLs

 
Subprograms 

Figure 2–2 The Topology of Late Second- and Early Third-Generation 
Programming Languages 

Data 



The Topology of Late Third-
Generation PLs

Subprograms 

Data 

Modules 

Figure 2–3 The Topology of Late Third-Generation Programming 
Languages 



The Topology of Object-Based and 
Object- Oriented PLs

 

Figure 2–4 The Topology of Small to Moderate-Sized 
Applications Using Object-Based and Object-Oriented 
Programming Languages 



Object-Oriented Programming

• Object-oriented programming is a method of 
implementation in which programs are 
organized as cooperative collections of 
objects, each of which represents an instance 
of some class, and whose classes are all 
members of a hierarchy of classes united via 
inheritance relationships.



Object-Oriented Design

• Object-oriented design is a method of design 
encompassing the process of object- oriented 
decomposition and a notation for depicting 
both logical and physical as well as static and 
dynamic models of the system under design.



Object-Oriented Analysis

Object-oriented analysis is a method of analysis 
that examines requirements from the 
perspective of the classes and objects found in 
the vocabulary of the problem domain.



Elements of the Object Model

• Procedure-oriented Algorithms

• Object-oriented Classes and objects

• Logic-oriented Goals, often expressed in a 
predicate calculus

• Rule-oriented If–then rules

• Constraint-oriented Invariant relationships



The Meaning of Abstraction

• An abstraction denotes the essential characteristics 
of an object that distinguish it from all other kinds of 
objects and thus provide crisply defined conceptual 
boundaries, relative to the perspective of the viewer.



Kinds of abstractions include the following:

• Entity abstraction - An object that represents a useful model of a

problem domain or solution domain entity

• Action abstraction - An object that provides a generalized set of

operations, all of which perform the same kind of function

• Virtual machine abstraction - An object that groups operations that are 
all used by some superior level of control, or operations that all use some 
junior-level set of operations

• Coincidental abstraction - An object that packages a set of operations

that have no relation to each other



The Meaning of Encapsulation

 

Encapsulation hides the details of the implementation of an object. 



• Encapsulation is the process of 
compartmentalizing the elements of an 
abstrac- tion that constitute its structure and 
behavior; encapsulation serves to separate 
the contractual interface of an abstraction and 
its implementation.



The Meaning of Modularity

 

 

Modularity packages abstractions into discrete units. 



The Meaning of Hierarchy

Hierarchy is a ranking or ordering of 
abstractions.



The Meaning of Typing

A type is a precise characterization of structural 
or behav- ioral properties which a collection of 
entities all share



Classes and Objects

What Is and What Isn’t an Object
• A tangible and/or visible thing

• Something that may be comprehended intellectually

• Something toward which thought or action is directed



• An object is an entity that has state, behavior, and 
identity. The structure and behavior of similar 
objects are defined in their common class. The 
terms instance and object are interchangeable.

The state of an object encompasses all 
of the (usually static) properties of the object 
plus the current (usually dynamic) values of 
each of these properties.



Behavior is how an object acts and reacts, 
in terms of its state changes and mes- sage 
passing.

The state of an object represents the 
cumulative results of its behavior.



Operations

– Modifier: an operation that alters the state of an 
object

– Selector: an operation that accesses the state of 
an object but does not alter the state

– Iterator: an operation that permits all parts of an 
object to be accessed in some well-defined order



Roles and Responsibilities

“Responsibilities are meant to convey a sense of 
the purpose of an object and its place in the 
system. The responsibilities of an object are all 
the services it pro- vides for all of the contracts 
it supports”



Relationships among Objects

Two kinds of object relationships 
• Links
• Aggregation

An object may play one of three roles.

• Controller: This object can operate on other objects but is not 
operated on by other objects. In some contexts, the terms active 
object and controller are interchangeable.

• Server: This object doesn’t operate on other objects; it is only 
operated on by other objects.

• Proxy: This object can both operate on other objects and be 
operated on by other objects. A proxy is usually created to 
represent a real-world object in the domain of the application.



Links



Aggregation



Class

What Is and What Isn’t a Class

• A class is a set of objects that share a 
common structure, common behavior, and 
common semantics.



Interface and Implementation

The interface of a class into four parts:

Public: a declaration that is accessible to all 
clients

• Protected: a declaration that is accessible only 
to the class itself and its sub- classes

• Private: a declaration that is accessible only to 
the class itself

• Package: a declaration that is accessible only 
by classes in the same package



Relationships among Classes

Inheritance

 

A subclass may inherit the structure and behavior of its superclass. 



Single Inheritance

A subclass may inherit the structure and 
behavior of its superclass.

 

Figure 3–9 Single Inheritance 

 



Multiple Inheritance



Polymorphism

Polymorphism is a concept in type theory 
wherein a name may denote instances of many 
different classes as long as they are related by 
some common superclass.



Aggregation

• Aggregation relationships among classes have 
a direct parallel to aggregation relationships 
among the objects corresponding to these 
classes.



Dependencies

• A dependency indicates that an element on 
one end of the relationship, in some manner, 
depends on the element on the other end of 
the relationship. 



Measuring the Quality of an 
Abstraction

• Coupling

• Cohesion

• Sufficiency

• Completeness

• Primitiveness



Classification

Classification is the means whereby we 
order knowledge. In object- oriented design, 
recognizing the sameness among things allows 
us to expose the commonality within key 
abstractions and mechanisms and eventually 
leads us to smaller applications and simpler 
architectures.



The Importance of Proper 
Classification

• Classification helps us to identify 
generalization, specialization, and aggregation 
hierarchies among classes.

• Classification also guides us in making 
decisions about modular- ization. 

Classification is the means whereby we order knowledge. 



Identifying Classes and Objects

Classical and Modern Approaches

Historically, there have been only three 

general approaches to classification:
• Classical categorization

• Conceptual clustering

• Prototype theor



Object-Oriented Analysis

Classical Approaches

The objects derive primarily from the principles of 
classical categorization.

• Tangible things - Cars, telemetry data, pressure sensors
• Roles - Mother, teacher, politician
• Events - Landing, interrupt, request
• Interactions - Loan, meeting, intersection



Behavior Analysis

object-oriented analysis focuses on 
dynamic behavior as the primary source of 
classes and objects

Domain Analysis

To identify the classes and objects that are 
common to all applications within a given 
domain, such as patient record tracking, bond 
trading, compilers, or missile avi- onics systems.



Use Case Analysis

The practices of classical analysis, behavior 
analysis, and domain analysis all depend on a 
large measure of personal experience on the 
part of the analyst. For the majority of 
development projects, this is unacceptable 
because such a process is neither deterministic 
nor predictably successful.



CRC Cards

• CRC cards have proven to be a useful 
development tool that facilitates 
brainstorming and enhances communication 
among develop- ers.

• A CRC card is nothing more than a 3u5 index 
card,3 on which the analyst writes—in pencil—
the name of a class (at the top of the card), its 
responsibilities



Informal English Description

An English description of the problem (or a 
part of a problem) and then underlining the 
nouns and verbs. The nouns represent candidate 
objects, and the verbs represent candidate 
operations on them.



Structured Analysis
• Structured analysis as a front end to object-oriented 

design.
• A particular data flow diagram candidate objects may 

be derived from the following:
– External entities
– Data stores
– Control stores
– Control transformations

• Candidate classes derive from two sources:
– Data flows
– Control flows



Key Abstractions and Mechanisms

• A key abstraction is a class or object that 
forms part of the vocabulary of the prob- lem
domain.

• Mechanism to describe any structure whereby 
objects collaborate to provide some behavior 
that satisfies a requirement of the problem.



Identifying Key Abstractions

The identification of key abstractions is
highly domain-specific. As Goldberg states, the
“appropriate choice of objects depends, of
course, on the purposes to which the
application will be put and the granularity of
information to be manipulated”



Refining Key Abstractions

The most common reorganizations of a 
class hierarchy are factoring the common part of 
two classes into a new class and splitting a class 
into two new ones



Naming Key Abstractions

Objects should be named with proper noun phrases, such as theSensor

or just simply shape.
– Classes should be named with common noun phrases, such as Sensor or

Shape.
– The names chosen should reflect the names used and recognized by the

domain experts, whenever possible.
– Modifier operations should be named with active verb phrases, such as

draw or moveLeft.
– Selector operations should imply a query or be named with verbs of the form 

“to be,” such as extentOf or isOpen.

- The use of underscores and styles of capitalization are largely matters 
of personal taste. No matter which cosmetic style you use, at least have 
your programs be self-consistent.



Identifying Mechanisms

– A mechanical linkage connects the accelerator directly 
to the fuel injectors.

– An electronic mechanism connects a pressure sensor 
below the accelerator to a computer that controls the 
fuel injectors (a drive-by-wire mechanism).

– No linkage exists. The gas tank is placed on the roof of 
the car, and gravity causes fuel to flow to the engine. 
Its rate of flow is regulated by a clip around the fuel 
line; pushing on the accelerator pedal eases tension 
on the clip, causing the fuel to flow faster (a low-cost 
mechanism).


