Syllabus

Elective Course- II-17PCSEQ07 OBJECT ORIENTED ANALYSIS AND DESICN
Credits: 5
Course Objectives:
= Describe Object Oriented Analysis and Design concepts to solve many real life
problems and to develop Software.
= Helps to prepare Object Oriented Analysis and Design documents for a given problem
using Unified Maodeling I angiage

UNIT -1

Introduction: Role of Anzlysis and Des:ign in Software Development — MNMeaning of Object
Orieptation - Overview of Varions OOAD Methodologies - Coals of UMI. Use case
Modeling: Actors and Use Cases - Use Case Relationships - Writing Use Cases formally -
Choosing the System Baundary - Finding Actors - Finding Use Cases - Use of Use Cases for
Validation and Verification - Use Case Realization.

UNIT - IX

Concept: The Object Model - The Evolution of the Object Model - Fournddastions of the
Object Model - Elements of the Object Model - Applying the Object Model. Classes and
Object: The Nature of an Object - Relationships among Objects - The Nature of 2 Class -
Relationships among Classes - The Interplay of Classes and Objects - On Bullding Ouality
Classes and Objects Classification: The impoartance of proper classificetion - Idenlifying
classes and objects - Key abstractions and Mechanisms.

UNIT - 111

Notations: The Unificd Modeling [anguage - Package Diagrams - Component Diagrams -
Deployment Diagrams - Use Case Diagrams - Activity Diagrams.

UNIT — IV

Class Diagrams: Sequence Diagrams - Inferaction Overview Diagrams - Composite
Structure Diagrams - State Machine Diagrams - Timing Diagrams - Object Diagrams -
Communication Diegrams.

UNIT -V

Applications: System Arschitecturs: Satellite-Based Navigation - Control System: Traffic
Management - Web Application: Vacstion Tracking System - Data Acquisition: Weather
Monitoring Station.

TEXT BOOKS
1. Mahesh P Mathe “Object — Ormented Anslysis and I esign Uisange UNILLT | PHI
Leaming Private Limited. New Delhi. 2008
2 Crady Booch Robert A MNMaksimchuk Michael W. Engle Babbl |. Young, PhD. Jim
Conanllen Kells A Houston “Object-Ornented Arsaalvsis and Design wath Applhcations'™
Third Edition, Pearson Education, Inc_April 2007

REFERENCE BOOKS
1. Muorun Fowler, Kendall Scon, “UNMIL Distilled. A Bri of Quide 1o the Standasd Object
Modeling | spouspes”. Second Edition. Pearson Edocat son . 2000
Z. James Rumbasngh ot al ~ Object - Orlented Modeling and Desagn Wath LML sec oad
Edition, Pearson Edocation. Z007 .

35

34

UNIT - |

INTRODUCTION & MODELING

e]
Object-oriented analysis and design

+ Object-oriented analysis and design (OOAD) is a popular technical
approach for
+ analyzing,
« designing an application, system, or business
+ by applying the object oriented paradigm and
« visual modeling throughout the development life cycles for better communication
and product quality.
+ Object-oriented programming (OOP) is a method
+ based on the concept of “objects",
+ which are data structures that contain data,
+ in the form of fields,
« often known as attributes;
« and code, in the form of procedures,
+ often known as methods.

some of OOD concepts that seem relevant
to the UML:

* Class and object,

 Message, Operation, Method,
* Encapsulation,

* Abstraction,

* Inheritance,

* Polymorphism.

* The three major methodologies and their modeling
notations developed by Rumbaugh et al., Booch and
Jacobson which are the origins of the Unified Modeling

Language.

* Each method has its strengths.
* Rambaugh method is well-suited for describing the object
model or the static structure of the system.
* The Jacobson et al. method is good for producing user -
driven analysis models.
* The Booch method produces detailed object-oriented design
models.

Booch Methodology

It is a widely used object oriented method that helps us design
our system using the object paradigm.
It covers the analysis and design phases of an object oriented
system.
We start with class & object diagrams in analysis phase and
refine these diagrams in various steps.
The Booch method consists of the following diagrams :
* Class diagrams,
* Object diagrams,
State Transition diagrams,
Module diagrams
Process diagrams,
Interaction programs.

—

| Jacobson et al. Methodology

* Use Cases.
* Object Oriented Software Engineering,.
* Object Oriented Business Engineering.

Use Cases

* Understanding system requirements

* Interaction between Users and Systems
* The use case description must contain

» How and when the use case beginsand ends.

» The Interaction between the use case and its actors, including
when the interaction occurs and what is exchanged.

How and when the use case will need data stored in the system.
Exception to the flow of events
How and when concepts of the problem domain are handled.

OOSE

* Object Oriented Software Engineering.

* Objectory (Object Factory for S/w Development) is
built around several different models:

Use case model. The use-case model defines the outside (actors) and
inside (use case) of the systems behavior.

Domain object model. The objects of the “real” world are mapped
into the domain object model.

Analysis object model. The analysis object model presents how the
source code (implementation) should be carried out and written.
Implementation model. The implementation model represents the
implementation of the system.

Test model. The test model constitutes the test plans, specifications,
and reports.

Use Case Diagrams

- A use case diagram at its simplest is a representation of
a user's interaction with the system that shows the
relationship between the user and the different use cases
in which the user is involved.

B,.;;F\\. %
G a

-
Actor

% An actor instance is someone or

something outside the system that interacts with the
system.

- An actor is anything that exchanges data with the system.

- An actor can be a user, external hardware, or another
system.

e
How to Find Actors

- Actors:
Supply/use/remove information
Use the functionality.
Will be interested in any requirement.
Will support/maintain the system.
The system’s external resources.
The other systems will need to interact with this one.

e
Terminologies

- System boundary: rectangle diagram representing the
boundary between the actors and the system.

- Use Case Diagram(core relationship)
Association: communication between an actor and a use case;
Represented by a solid line.

+ Generalization: relationship between one general use case and a
special use case (used for defining special alternatives)

+ Represented by a line with a triangular arrow head toward the
parent use case.

« Include: a dotted line labeled <<include>> beginning at base use
case and ending with an arrows pointing to the include use case.
The include relationship occurs when a chunk of behavior is
similar across more than one use case. Use “include” in stead of
copying the description of that behavior.

<<include>>

« Extend: a dotted line labeled <<extend>> with an

arrow toward the base case. The extending use case may add
behavior to the base use case. The base class declares “extension
points™.

<<extend>>

Example: Library management System

- A generalized description of how a system will be used.

- Provides an overview of the intended functionality of the
system

- l")

0
2 Employee

\\
N
N AN /
N (orterm /
1 i RS /

\
>+0

Superwsor

UNIT I

CONCEPT & OBJECT

The Generations of Programming Languages

Wegner has classified some of the more popular high-order programming lan- guages in
generations arranged according to the language features they first intro- duced [2]. (By no
means is this an exhaustive list of all programming languages.)

* First-generation languages (1954-1958) FORTRAN | Mathematical expressions ALGOL 58
Mathematical expressions Flowmatic Mathematical expressions IPL V
Mathematical expressions

 Second-generation languages (1959-1961) FORTRAN Il Subroutines, separate
compilation ALGOL 60 Block structure, data types COBOL Data description,
file handling

« Lisp List processing, pointers, garbage collection

e Third-generation languages (1962-1970)

* PL/1 FORTRAN + ALGOL + COBOL

* ALGOL 68 Rigorous successor to ALGOL 60 Pascal Simple successor to ALGOL 60
 SimulaClasses, data abstraction

* The generation gap (1970-1980)

 Many different languages were invented, but few endured. However, the fol- lowing are
worth noting:

e C Efficient; small executables FORTRAN 77 ANSI standardization

Object-orientation boom (1980-1990, but few languages survive) Smalltalk 80
object-oriented language

C++ Derived from C and Simula

Ada83 Strong typing; heavy Pascal influence
Eiffel Derived from Ada and Simula
Emergence of frameworks (1990—-today)

Much language activity, revisions, and standardization have occurred, lead- ing to
programming frameworks.

Visual Basic Eased development of the graphical user interface
(GUI) for Windows applications

Java Successor to Oak; designed for portability

Python Object-oriented scripting language

J2EE Java-based framework for enterprise computing

.NET Microsoft’s object-based framework

Visual C# Java competitor for the Microsoft .NET
Framework

Visual Basic .NET Visual Basic for the Microsoft .NET Framework

Pure

The Topology of First- and Early
Second- Generation PLs

Data

NS

l

h

O

I

h

Subprograms

Figure 2—-1 The Topology of First- and Early Second-Generation

Programming Languages

The Topology of Late Second- and
Early Third-Generation PLs

Data

| / =
IR B [, 0 [=2,0

Subprograms

Figure 2-2 The Topology of Late Second- and Early Third-Generation
Programming Languages

The Topology of Late Third-
Generation PLs

Modules

/\
Data

7
R s R (=
- 1 -
Subprograms

Figure 2-3 The Topology of Late Third-Generation Programming
Languages

The Topology of Object-Based and
Object- Oriented PLs

B
e
B B D
ki \‘/D/
T~ \
B
\? b

Figure 2—4 The Topology of Small to Moderate-Sized
Applications Using Object-Based and Object-Oriented
Programming Languages

Object-Oriented Programming

e Object-oriented programming is a method of
implementation in which programs are
organized as cooperative collections of
objects, each of which represents an instance
of some class, and whose classes are all
members of a hierarchy of classes united via
inheritance relationships.

Object-Oriented Design

* Object-oriented design is a method of design
encompassing the process of object- oriented
decomposition and a notation for depicting
both logical and physical as well as static and
dynamic models of the system under design.

Object-Oriented Analysis

Object-oriented analysis is a method of analysis
that examines requirements from the
perspective of the classes and objects found in
the vocabulary of the problem domain.

Elements of the Object Model

Procedure-oriented Algorithms
Object-oriented Classes and objects

Logic-oriented Goals, often expressed in a
predicate calculus

Rule-oriented If-then rules
Constraint-oriented Invariant relationships

The Meaning of Abstraction

* An abstraction denotes the essential characteristics
of an object that distinguish it from all other kinds of
objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer.

Kinds of abstractions include the following:

Entity abstraction - An object that represents a useful model of a
problem domain or solution domain entity

Action abstraction - An object that provides a generalized set of
operations, all of which perform the same kind of function

Virtual machine abstraction - An object that groups operations that are
all used by some superior level of control, or operations that all use some

junior-level set of operations
Coincidental abstraction - An object that packages a set of operations

that have no relation to each other

The Meaning of Encapsulation

Encapsulation hides the detalls of the implementation of an object.

* Encapsulation is the process of
compartmentalizing the elements of an
abstrac- tion that constitute its structure and
behavior; encapsulation serves to separate
the contractual interface of an abstraction and

its implementation.

The Meaning of Modularity

Modularity packages abstractions into discrete units.

The Meaning of Hierarchy

Hierarchy is a ranking or ordering of
abstractions. |

The Meaning of Typing

A type is a precise characterization of structural
or behav- ioral properties which a collection of
entities all share

Classes and Objects

What Is and What Isn’t an Object

* A tangible and/or visible thing
 Something that may be comprehended intellectually
ht or action is directed

A

* An object is an entity that has state, behavior, and

identity. The structure and behavior of simi

ar

objects are defined in their common class. The

terms instance and object are interchangea

ole.

The state of an object encompasses all
of the (usually static) properties of the object
plus the current (usually dynamic) values of

each of these properties.

Behavior is how an object acts and reacts,
in terms of its state changes and mes- sage
passing.

The state of an object represents the
cumulative results of its behavior.

Operations

— Modifier: an operation that alters the state of an
object

— Selector: an operation that accesses the state of
an object but does not alter the state

— Iterator: an operation that permits all parts of an
object to be accessed in some well-defined order

Roles and Responsibilities

“Responsibilities are meant to convey a sense of
the purpose of an object and its place in the
system. The responsibilities of an object are all

the services it pro- vides for all of the contracts
it supports”

Relationships among Objects

Two kinds of object relationships

Links
Aggregation

An object may play one of three roles.

Controller: This object can operate on other objects but is not
operated on by other objects. In some contexts, the terms active
object and controller are interchangeable.

Server: This object doesn’t operate on other objects; it is only
operated on by other objects.

Proxy: This object can both operate on other objects and be
operated on by other objects. A proxy is usually created to
represent a real-world object in the domain of the application.

Links

Valve
i
0.1: adjust 1
FlowController DisplayPanel

W

Aggregation

TemperatureRamp

+ interpolate()

requlates temperature using

TemperatureController

Heater

heater: <>

+ schedule()
+ process()

Class

What Is and What Isn’t a Class

. A class is a set of objects that share a
common structure, common behavior, and
common semantics.

Interface and Implementation

The interface of a class into four parts:

Public: a declaration that is accessible to all
clients

* Protected: a declaration that is accessible only
to the class itself and its sub- classes

* Private: a declaration that is accessible only to
the class itself

* Package: a declaration that is accessible only
by classes in the same package

Relationships among Classes

Inheritance

A subclass may inherit the structure and behavior of its superclass.

Single Inheritance

A subclass may inherit the structure and
behavior of its superclass.

TelemetryData

SpectrometerData CameraData RadiationData

Figure 3-9 Single Inheritance

Multiple Inheritance

InterestBearingltem

Asset

RealEstate

v

Insurableltem

BankAccount

Savingsfccount

CheckingAccount

Security

Stock

Bond

Polymorphism

Polymorphism is a concept in type theory
wherein a name may denote instances of many

different classes as long as they are related by
some common superclass.

Aggregation

* Aggregation relationships among classes have
a direct parallel to aggregation relationships
among the objects corresponding to these
classes.

Dependencies

A dependency indicates that an element on
one end of the relationship, in some manner,
depends on the element on the other end of
the relationship.

Measuring the Quality of an
Abstraction

* Coupling

* Cohesion

* Sufficiency

* Completeness
* Primitiveness

Classification

Classification is the means whereby we
order knowledge. In object- oriented design,
recognhizing the sameness among things allows
us to expose the commonality within key
abstractions and mechanisms and eventually

leads us to smaller applications and simpler
architectures.

The Importance of Proper
Classification

e Classification helps us to identify
generalization, specialization, and aggregation
hierarchies among classes.

e Classification also guides us in making
decisions about J@odular- ization.

Doy 50
) .. £
4 CJ

ha o

Classification is the means whereby we order knowledge.

ldentifying Classes and Objects

Classical and Modern Approaches
Historically, there have been only three

general approaches to classification:
 Classical categorization
* Conceptual clustering
* Prototype theor

Object-Oriented Analysis

Classical Approaches

The objects derive primarily from the principles of
classical categorization.

* Tangible things - Cars, telemetry data, pressure sensors
* Roles - Mother, teacher, politician

* Events - Landing, interrupt, request

* |Interactions - Loan, meeting, intersection

Behavior Analysis

object-oriented analysis focuses on
dynamic behavior as the primary source of
classes and objects

Domain Analysis

To identify the classes and objects that are
common to all applications within a given
domain, such as patient record tracking, bond
trading, compilers, or missile avi- onics systems.

Use Case Analysis

The practices of classical analysis, behavior
analysis, and domain analysis all depend on a
large measure of personal experience on the
part of the analyst. For the majority of
development projects, this is unacceptable
because such a process is neither deterministic
nor predictably successful.

CRC Cards

* CRC cards have proven to be a useful
development tool that facilitates
brainstorming and enhances communication
among develop- ers.

* A CRC card is nothing more than a 3u5 index
card,3 on which the analyst writes—in pencil—
the name of a class (at the top of the card), its
responsibilities

Informal English Description

An English description of the problem (or a
part of a problem) and then underlining the
nouns and verbs. The nouns represent candidate
objects, and the verbs represent candidate
operations on them.

Structured Analysis

e Structured analysis as a front end to object-oriented
design.

e A particular data flow diagram candidate objects may
be derived from the following:
— External entities
— Data stores
— Control stores
— Control transformations

e Candidate classes derive from two sources:
— Data flows
— Control flows

Key Abstractions and Mechanisms

* A key abstraction is a class or object that

forms part of the vocabulary of the prob- lem
domain.

 Mechanism to describe any structure whereby
objects collaborate to provide some behavior
that satisfies a requirement of the problem.

Identifying Key Abstractions

The identification of key abstractions is
highly domain-specific. As Goldberg states, the
“appropriate choice of objects depends, of
course, on the purposes to which the
application will be put and the granularity of
information to be manipulated”

Refining Key Abstractions

The most common reorganizations of a
class hierarchy are factoring the common part of
two classes into a new class and splitting a class
Into two new ones

Naming Key Abstractions

Objects should be named with proper noun phrases, such as theSensor
or just simply shape.

— Classes should be named with common noun phrases, such as Sensor or
Shape.

— The names chosen should reflect the names used and recognized by the
domain experts, whenever possible.

— Modifier operations should be named with active verb phrases, such as
draw or moveleft.

— Selector operations should imply a query or be named with verbs of the form
“to be,” such as extentOf or isOpen.

- The use of underscores and styles of capitalization are largely matters
of personal taste. No matter which cosmetic style you use, at least have
your programs be self-consistent.

Identifying Mechanisms

— A mechanical linkage connects the accelerator directly
to the fuel injectors.

— An electronic mechanism connects a pressure sensor
below the accelerator to a computer that controls the
fuel injectors (a drive-by-wire mechanism).

— No linkage exists. The gas tank is placed on the roof of
the car, and gravity causes fuel to flow to the engine.
Its rate of flow is regulated by a clip around the fuel
line; pushing on the accelerator pedal eases tension

on the clip, causing the fuel to flow faster (a low-cost
mechanism).

